2019-09-16

Важно. Как высчитать процент от суммы? Терминологический словарь банковских и финансовых терминов. Что называется процентом

Возможно, математика не была вашим любимым предметом в школе, а числа пугали и наводили тоску. Но во взрослой жизни от них никуда не деться. Без вычислений не заполнить квитанцию об оплате электроэнергии, не составить бизнес-проект, не помочь ребёнку с домашним заданием. Часто в этих и других случаях требуется посчитать процент от суммы. Как это сделать, если о том, что такое процент, со школьных времён остались смутные воспоминания? Давайте напряжём память и разберёмся.

Способ первый: процент от суммы через определение значения одного процента

Процент – одна сотая часть от числа и обозначается знаком %. Если разделить сумму на 100, то как раз получится один её процент. А дальше всё просто. Полученное число умножаем на нужное количество процентов. Таким способом легко посчитать прибыль по вкладу в банке.

Например, вы положили сумму в 30 000 под 9% годовых. Каким будет прибыток? Сумму 30 000 делим на 100. Получаем значение одного процента – 300. Умножаем 300 на 9 и получаем 2700 рублей – прибавку к первоначальной сумме. Если вклад — на два или три года, то этот показатель удваивается или утраивается. Бывают вклады, по которым выплату процентов производят ежемесячно. Тогда надо 2700 разделить на 12 месяцев. 225 рублей будут ежемесячным прибытком. Если проценты капитализируются (прибавляются к общему счёту), то каждый месяц сумма вклада будет увеличиваться. А значит, и процент будет высчитываться не от первоначального взноса, а от нового показателя. Поэтому в конце года вы получите прибыль уже не 2700 рублей, а больше. Сколько? Попробуйте посчитать.

Способ второй: переводим проценты в десятичную дробь

Как вы помните, процент — сотая часть числа. В виде десятичной дроби это 0,01 (ноль целых одна сотовая). Следовательно, 17% – это 0,17 (ноль целых, семнадцать сотых), 45% – 0,45 (ноль целых, сорок пять сотых) и т. д. Полученную десятичную дробь умножаем на сумму, процент от которой считаем. И находим искомый ответ.

Например, давайте рассчитаем сумму подоходного налога от зарплаты 35 000 рублей. Налог составляет 13%. В виде десятичной дроби это будет 0,13 (ноль целых, тринадцать сотых). Умножим сумму 35 000 на 0,13. Получится 4 550. Значит, после вычета подоходного налога вам будет перечислена зарплата 35 000 – 4 550 = 30 050. Иногда эту сумму уже без налога называют «зарплатой на руки» или «чистой». В противовес этому сумму вместе с налогом «грязной зарплатой». Именно «грязную зарплату» указывают в объявлениях о вакансиях компании и в трудовом договоре. На руки же даётся меньше. Сколько? Теперь вы легко посчитаете.

Способ третий: считаем на калькуляторе

Если сомневаетесь в своих математических способностях, то воспользуйтесь калькулятором. С его помощью считается быстрее и точнее, особенно если речь идёт о больших суммах. Проще работать с калькулятором, у которого есть кнопка со знаком процент %. Сумму умножаем на количество процентов и нажимаем кнопку %. На экране высветится необходимый ответ.

Например, вы хотите посчитать, каким будет ваше пособие по уходу за ребёнком до 1,5 лет. Оно составляет 40% от среднего заработка за два последних закрытых календарных года. Допустим, средняя зарплата получилась 30 000 рублей. На калькуляторе 30 000 умножаем на 40 и нажимаем кнопку %. Клавишу = трогать не нужно. На экране высветится ответ 12 000. Это и будет величина пособия.

Как видите, всё очень просто. Тем более, что приложение «Калькулятор» сейчас есть в каждом сотовом телефоне. Если специальной кнопки % у аппарата нет, то воспользуйтесь одним из двух описанных выше способов. А умножение и деление произведите на калькуляторе, что облегчит и ускорит ваши вычисления.

Не забудьте: для облегчения подсчётов есть онлайн-калькуляторы. Действуют они так же, как и обычные, но всегда под рукой, когда вы работаете на компьютере.

Способ четвёртый: составляем пропорцию

Посчитать процент от суммы можно с помощью составления пропорции. Это ещё одно страшное слово из школьного курса математики. Пропорция – равенство между двумя отношениями четырёх величин. Для наглядности лучше сразу разобраться на конкретном примере. Вы хотите купить сапоги за 8 000 рублей. На ценнике указано, что они продаются со скидкой 25%. Сколько же это в рублях? Из 4 величин мы знаем 3. Есть сумма 8 000, которая приравнивается к 100%, и 25%, которые требуется посчитать. В математике обычно неизвестную величину называют X. Получается пропорция:

Для удобства подсчётов переводим проценты в десятичные дроби. Получаем:

Решается пропорция так: Х = 8 000 * 0,25: 1X = 2 000

2 000 рублей – скидка на сапоги. Вычитаем эту сумму из старой цены. 8 000 – 2 000= 6 000 рублей (новая цена со скидкой). Вот такая приятная пропорция.

Этим методом можно воспользоваться и для определения значения 100%, если знаете числовой показатель – допустим, 70%. На общекорпоративном собрании шеф объявил, что за год было продано 46 900 единиц товара, при этом план выполнен лишь на 70%. Сколько же необходимо было продать, чтобы выполнить план полностью? Составляем пропорцию:

Переводим проценты в десятичные дроби, получается:

Решаем пропорцию: Х = 46 900 * 1: 0,7Х = 67 000. Вот таких результатов работы ожидало начальство.

Как вы уже догадались, методом пропорции можно вычислить, сколько процентов составляет числовой показатель от суммы. Например, выполняя тест, вы ответили правильно на 132 вопроса из 150. Сколько процентов задания было сделано?

Переводить в десятичные дроби эту пропорцию не надо, можно сразу решать.

Х = 100 * 132: 150. В итоге Х = 88%

Как видите, не так уж всё и страшно. Немного терпения и внимания, и вот уже вычисление процентов вами осилено.

Процент это один из интересных и часто применяемых на практике инструментов. Проценты частично или полностью применяются в любой науке, на любой работе и даже в повседневном общении. Человек, который хорошо разбирающийся в процентах, создаёт впечатление умного и образованного. В данном уроке мы узнаем, что такое процент и какие действия можно с ним выполнять.

Содержание урока


Что такое процент?

В повседневной жизни дроби встречаются наиболее часто. Они даже получили свои названия: половина, треть и четверть соответственно.

Но есть ещё одна дробь, которая тоже встречается часто. Это дробь (одна сотая). Данная дробь получила название процент
. А что означает дробь одна сотая ? Эта дробь означает, что чего-либо разделено на сто частей и оттуда взята одна часть. Значит процентом является одна сотая часть чего-либо.

Процентом называется одна сотая часть чего-либо

Например, от одного метра составляет 1 см. Один метр разделили на сто частей, и взяли одну часть (вспоминаем, что 1 метр это 100 см). А одна часть из этих ста частей составляет 1 см. Значит один процент от одного метра составляет 1 см.

От одного метра уже составляет 2 сантиметра. В этот раз один метр разделили на сто частей и взяли оттуда не одну, а две части. А две части из ста составляют два сантиметра. Значит два процента от одного метра составляет 2 сантиметра.

Еще пример, от одного рубля составляет одну копейку. Рубль разделили на сто частей, и взяли оттуда одну часть. А одна часть из этих ста частей составляет одну копейку. Значит один процент от одного рубля составляет одну копейку.

Проценты встречались настолько часто, что люди заменили дробь на специальный значок, который выглядит следующим образом:

Эта запись читается как «один процент». Она заменяет собой дробь . Также она заменяет собой десятичную дробь 0,01 потому что если перевести обычную дробь в десятичную дробь, то мы получим 0,01. Стало быть между этими тремя выражениями можно поставить знак равенства:

1% = = 0,01

Два процента в дробном виде будут записаны как , в виде десятичной дроби как 0,02 а с помощью специального значка два процента записывается как 2%.

2% = = 0,02

Как найти процент?

Принцип нахождения процента такой же, как и обычное нахождение дроби от числа. Чтобы найти процент от чего-либо, нужно это чего-либо разделить на 100 частей и полученное число умножить на нужный процент.

Например, найти 2% от 10 см.

Что означает запись 2% ? Запись 2% заменяет собой запись . Если перевести это задание на более понятый язык, то оно будет выглядеть следующим образом:

Найти от 10 см

А как решать подобные задания мы уже знаем. Это обычное нахождение дроби от числа. Чтобы найти дробь от числа, нужно это число разделить на знаменатель дроби, и полученный результат умножить на числитель дроби.

Итак, делим число 10 на знаменатель дроби

Получили 0,1. Теперь 0,1 умножаем на числитель дроби

0,1 × 2 = 0,2

Получили ответ 0,2. Значит 2% от 10 см составляет 0,2 см. А если , то получим 2 миллиметра:

0,2 см = 2 мм

Значит 2% от 10 см составляют 2 мм.

Пример 2.
Найти 50% от 300 рублей.

Чтобы найти 50% от 300 рублей, нужно эти 300 рублей разделить на 100, и полученный результат умножить на 50.

Итак, делим 300 рублей 100

300: 100 = 3

Теперь полученный результат умножаем на 50

3 × 50 = 150 руб.

Значит 50% от 300 рублей составляет 150 рублей.

Если на первых порах сложно привыкнуть к записи со значком %, можно заменять эту запись на обычную дробную запись.

Например, те же 50% можно заменить на запись . Тогда задание будет выглядеть так: Найти от 300 рублей, а решать такие задачи для нас пока проще

300: 100 = 3

3 × 50 = 150

В принципе, ничего сложного здесь нет. Если возникают сложности, советуем остановиться и заново изучить и .

Пример 3.
Швейная фабрика выпустила 1200 костюмов. Из них 32% составляют костюмы нового фасона. Сколько костюмов нового фасона выпустила фабрика?

Здесь нужно найти 32% от 1200. Найденное число будет ответом к задаче. Воспользуемся правилом нахождения процента. Разделим 1200 на 100 и полученный результат умножим на искомый процент, т.е. на 32

1200: 100 = 12

12 × 32 = 384

Ответ: 384 костюмов нового фасона выпустила фабрика.

Второй способ нахождения процента

Второй способ нахождения процента намного проще и удобнее. Он заключается в том, что число от которого ищется процент сразу умножит на нужный процент, выраженный в виде десятичной дроби.

Например, решим предыдущую задачу этим способом. Найти 50% от 300 рублей.

Запись 50% заменяет собой запись , а если перевести эти в десятичную дробь, то мы получим 0,5

Теперь для нахождения 50% от 300, достаточно будет умножить число 300 на десятичную дробь 0,5

300 × 0,5 = 150

Кстати, по этому же принципу работает механизм нахождения процента на калькуляторах. Чтобы найти процент с помощью калькулятора, нужно ввести в калькулятор число от которого ищется процент, затем нажать клавишу умножения и ввести искомый процент. Затем нажать клавишу процента %

Нахождения числа по его проценту

Зная процент от числа, можно узнать всё число. Например, предприятие выплатило нам 60000 рублей за работу, и это составляет 2% от общей прибыли, полученной предприятием. Зная свою долю, и сколько процентов она составляет, мы можем узнать общую прибыль.

Сначала нужно узнать сколько рублей составляет один процент. Как это сделать? Попробуйте догадаться внимательно изучив следующий рисунок:

Если два процента от общей прибыли составляют 60 тысяч рублей, то нетрудно догадаться, что один процент составляет 30 тысяч рублей. А чтобы получить эти 30 тысяч рублей, нужно 60 тысяч разделить на 2

60 000: 2 = 30 000

Мы нашли один процент от общей прибыли, т.е. . Если одна часть это 30 тысяч, то для определения ста частей, нужно 30 тысяч умножить на 100

30 000 × 100 = 3 000 000

Мы нашли общую прибыль. Она составляет три миллиона.

Попробуем сформировать правило нахождения числа по его проценту.

Чтобы найти число по его проценту, нужно известное число разделить на данный процент, и полученный результат умножить на 100.

Пример 2.
Число 35 это 7% от какого-то неизвестного числа. Найти это неизвестное число.

Читаем первую часть правила:

Чтобы найти число по его проценту, нужно известное число разделить на данный процент

У нас известное число это 35, а данный процент это 7. Разделим 35 на 7

35: 7 = 5

Читаем вторую часть правила:

и полученный результат умножить на 100

У нас полученный результат это число 5. Умножим 5 на 100

5 × 100 = 500

500 это неизвестное число, которое требовалось найти. Можно сделать проверку. Для этого находим 7% от 500. Если мы всё сделали правильно, то должны получить 35

500: 100 = 5

5 × 7 = 35

Получили 35. Значит задача была решена правильно.

Принцип нахождения числа по его проценту такой же, как и обычное нахождение целого числа по его дроби. Если проценты на первых порах смущают и сбивают с толку, то запись с процентом можно заменять на дробную запись.

Например, предыдущая задача может быть изложена так: число 35
это от какого-то неизвестного числа. Найти это неизвестное число. Как решать такие задачи мы уже знаем. Это нахождение числа по дроби. Для нахождения числа по дроби, мы это число делим на числитель дроби и полученный результат умножаем на знаменатель дроби. В нашем примере число 35 нужно разделить на 7 и полученный результат умножить на 100

35: 7 = 5

5 × 100 = 500

В будущем мы будем решать задачи на проценты, часть из которых будут сложными. Чтобы на первых порах не усложнять обучение, достаточно уметь находить процент от числа, и число по проценту.

Задания для самостоятельного решения

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Знаю: наверняка ты терпеть не можешь слово «процент
». Но это чувство у тебя скоро исчезнет. Чтобы это произошло, разберем такой вопрос:

Что такое процент?

Откуда взялось это слово?

Все очень просто. Слово процент
произошло от латинского per cent- на сотню, и означает оно «сотая доля» или «сотая часть». То есть один процент
любого числа – это одна сотая этого числа.

И все. Этого достаточно, чтобы решать задачи, в которых присутствует это противное слово «процент».

Например:
чему равны от числа?

Прочтем это задание по-другому: чему равны сотых доли числа? Элементарно, правда? Нужно разделить число на частей (чтобы узнать, чему равна одна сотая доля – один процент) и взять таких части:

Сколько процентов
содержится в числе?

Снова перефразируем вопрос, заменив слово «процент
» на «сотую часть»: Сколько сотых частей находится в числе? Ответ сразу становится очевидным: в любом числе или предмете находится ровно сто сотых частей (то есть, если разделить число или предмет на частей, сколько будет этих частей? Очевидно же, что).

Разберем еще несколько примеров.

  1. Чему равны от числа?
  2. Чему равно число, которого равны?
  3. Сколько процентов составляет число от числа?

Решения:

1) И снова избавимся от слова «процент
». Получим такой вопрос:

Чему равны сотых числа?

Может показаться странным, что у нас целых – ведь мы уже выяснили, что в числе всего. Но с математической точки зрения ничего странного, ведь процент
– это всего лишь одна сотая от числа.
Почему нельзя одну сотую числа взять раз? Можно, ведь по сути это – просто число.

2) Итак, от числа равны. Можем составить простенькое уравнение:

Ты заметил, что я сразу же вместо написал? И правда, один процент
– это одна сотая, а значит, процентов
– это сотых. Ты можешь тоже так делать.

3) Обозначим искомое количество процентов буквой. Тогда от числа равно. Или, что то же самое, сотых от числа равно:

Проценты и десятичные дроби

В разобранных выше примерах мы убедились, что вместо знака процента
% можно писать, или просто разделить на. То есть, – это то же самое, что; – это и так далее. Но ведь любую из этих дробей можно записать компактнее: в виде десятичной дроби.

Значит, проценты
можно записать в виде десятичной дроби.

Правило перевода такое: сколько бы ни было процентов
, смещаем десятичную запятую на два знака влево и убираем значок % – и таким образом получаем обычное число. Данное правило будем теперь всегда применять сразу.

Например:

1) Чему равны от числа?

Вместо напишем что? . Итак, .

2) от какого числа равны?

Изменение числа на сколько-то процентов

Когда говорят, что число увеличилось на, это значит, что к числу надо прибавить.

Если же число уменьшилось на, это значит, что из числа надо вычесть.

Рассмотрим пример:

Цена холодильника в магазине за год увеличилась на. Какой стала цена, если изначально холодильник стоил р?

Решение:

Для начала определим, на сколько рублей изменилась (в данном случае – увеличилась) стоимость холодильника. По условию – на. Но от чего? Конечно же, от самой начальной стоимости холодильника (р). Получается, что нам нужно найти от р:

Теперь мы знаем, что цена увеличилась на р. Остается только, согласно правилу, прибавить к начальной стоимости величину изменения:

Новая цена рублей.

Еще пример
(постарайся решить самостоятельно):

Книга «Математика для чайников» в магазине стоит р. Во время акции все книги продаются со скидкой. Сколько теперь придется заплатить за эту книгу?

Решение:

Что такое скидка, ты наверняка знаешь? Скидка в означает, что стоимость товара уменьшили на.

На сколько уменьшилась стоимость книги (в рублях)? Нужно найти от начальной ее стоимости в р:

Цена уменьшилась, значит нужно из начальной стоимости вычесть то, на сколько она уменьшилась:

Новая цена рублей.

Правда ведь просто?

Но есть способ сделать это решение еще проще и короче!

Рассмотрим пример:

Увеличьте число на.

Чему равны от? Как мы уже выяснили раньше, это будет.

Теперь увеличим само число x на эту величину:

Получается, что в результате мы к десятичной записи прибавили и умножили на число. Обобщим это правило:

Пусть нам нужно увеличить число на.

от числа – это.

Тогда новое число будет равно: .

Например, увеличим число на:

А теперь попробуй сам:

  1. Увеличить число на
  2. Увеличить число на
  3. На сколько процентов число больше числа?

Решения:

3) Пусть искомое количество процентов
равно. Это значит, что если число увеличить на, получится:

Ответ: на.

Если число x надо уменьшить на, все аналогично:

Итак, правило:

Примеры:

1) Уменьшить число на.

2) На сколько процентов
число меньше числа?

3) Цена товара со скидкой в равна р. Чему равна цена без скидки?

Решения:

2) Число уменьшили на x процентов
и получили:

Ответ: на.

3) Пусть цена без скидки равна. Получается, что x уменьшили на и получили:

Напоследок рассмотрим еще один тип задач, частенько вызывающих недоумение:

Число больше числа на. На сколько процентов
число меньше числа?

Что за странный вопрос: конечно же на! Правильно?

А вот и нет. Если, например, масса одного шкафа на 25 кг больше массы другого, то, без сомнения, масса второго шкафа на 25 кг меньше массы первого. Но с процентами
так не прокатит! Ведь в первом случае, когда говорим, что число на больше числа, мы считаем от числа; а во втором случае, когда говорим, что число на меньше числа, мы считаем от числа. А поскольку числа и разные, то и от этих чисел будут разными!

Чтобы решить эту задачу верно, давай запишем условие в виде уравнения:

Число больше числа на. Это значит, что если число увеличить на, получим число:

Теперь в таком ж виде запишем вопрос: если число a уменьшить на процентов
, получим число:

Выразим число из равенства (1):

И подставим в (2):

Отсюда следует, что:

Итак, получаем, что число на меньше числа!

Подобные задачи часто попадаются в ЕГЭ.

Например:

В понедельник акции компании подорожали на некоторое число процентов
, а во вторник подешевели на то же самое число процентов
. В результате они стали стоить на дешевле, чем при открытии торгов в понедельник. На сколько процентов
подорожали акции компании в понедельник?

Решение:

Пусть цена акции в понедельник была равна, а искомое количество процентов
, записанное в виде десятичной дроби (то есть, уже поделенное на), равно.

Запишем формулой, чему равна стоимость акции после подорожания:

При этом известно, что эта конечная цена на меньше начальной цены. То есть, если уменьшить на, получим:

Подставим, выраженное ранее:

Согласно здравому смыслу подходит только положительное решение:

Вспомним теперь, что это пока только десятичная запись искомого количества процентов
, то есть это количество процентов
, деленное на. Чтобы перевести в проценты
, нужно домножить на 100%:

Где мы используем проценты в жизни?

Чаще всего мы их видим в банковских продуктах: вкладах, кредитах и т.д.

Если ты хорошо понимаешь, что такое проценты, и умеешь решать уравнения, то ты без труда расчитаешь, например, размер ежемесячного платежа по кредиту или сколько придётся переплатить, взяв ипотеку.

Такая задача есть в ЕГЭ под номером 17.

Теперь ты можешь обойтись без них.

Заключение

Ну что же, теперь подведем итоги:

· Процент
– это сотая часть, или одна сотая

· Решая задачи на проценты
, старайся сразу избавляться от знака %, переводя проценты
в десятичную дробь – число процентов
нужно разделить на.

· Пользуйся упрощенными формулами, когда нужно увеличить или уменьшить число на сколько-то процентов
: нужно домножить число на, если ты увеличиваешь его на, и на, если уменьшаешь.

Проценты
– это легко! Удачи!

ПРОЦЕНТЫ. КОРОТКО О ГЛАВНОМ

Один процент
любого числа – это одна сотая этого числа.

1. Проценты и десятичные дроби

2. Изменение числа на сколько-то процентов

Допустим, нужно увеличить число на.

от числа – это.

Тогда, новое число будет равно: .

Чтобы увеличить число на, нужно умножить его на.

Если число надо уменьшить на, то:

Уменьшить число на какую-то величину – значит вычесть из него эту величину:

Чтобы уменьшить число на, нужно умножить его на.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это – не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…

Но, думай сам…

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время
.

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте – нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором
и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье –
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника – Купить учебник – 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение…

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Банкир — это торговец. Он покупает деньги процент по вкладу
по низкой цене
и продаёт их процент по кредиту
по более высокой
. Полученная разница составляет его доход.

Желающих взять взаймы больше, чем тех, кто хочет положить деньги под процент. Поэтому коммерческие банки могут получить кредит у ЦБ РФ
Центрального банка страны
. На сентябрь 2016 года под «ключевая ставка»
(она же «ставка рефинансирования»)
11% годовых
. Логично предположить, что коммерческим банкам не очень-то выгодно принимать вклад
депозиты
с процентной ставкой выше этого значения. Исключение могут сделать лишь VIP-клиентам — владельцам заводов, газет, пароходов.

Для остальных же высокий процент по вкладу может являться маркетинговым ходом, поскольку он будет компенсирован с помощью различных комиссий.

Как рассчитать сумму, которую получит вкладчик, если проценты причисляются в конце срока депозита

Годовые вклады

Человек открыл вклад на 5000 рублей под 9% годовых на 2 года:

за год:

5000 рублей составляет 100%
x рублей составляет 9%
x=5000*9/100=450 рублей
за два года:

450 рублей за 1 год
x рублей за 2 года
x=450*2/1=900 рублей
5900 рублей вкладчик получит в конце срока
*
Что такое 100? — «Процент — это сотая доля числа». См. .

Месячные вклады

Человек открыл вклад на 5000 рублей под 9% годовых на 3 месяца:

за год:
5000*9/100=450 рублей
за 90 дней:

450 рублей за 365 дней
x рублей за 90 дней
x=450*90/365=110 рублей 96 копеек
5110 рублей 96 копеек вкладчик получит в конце срока
*
365 — это . В високосный год их будет 366. .

Калькулятор вычисления процентов по вкладу

дата приход сумма на счёте
5000 5000

*
проценты начинают начисляться со дня, следующего за днем поступления денег в банк, то есть с (Статья 839 Гражданского кодекса РФ).

Как рассчитать доходность пополняемого вклада с выплатой процентов в конце срока

Процент у пополняемых вкладов ниже. Объясняется это тем, что за время действия договора по вкладу может уменьшиться ставка рефинансирования и вклад перестанет быть выгоден банку. То есть банк должен будет выплачивать процент по вкладу выше, чем процент, который будут платить банку кредиторы.

Исключение: если ставка по вкладу зависит от ставки рефинансирования. Иными словами, ставка рефинансирования растёт — растёт процент по вкладу, ставка рефинансирования уменьшается — уменьшается процент по вкладу.

Пример подсчёта процентов по пополняемому вкладу

Человек открыл вклад на 5000 рублей под 9% годовых на 3 месяца. Спустя месяц он положил ещё 3000 рублей:

за год:
5000*9/100=450 рублей
за 30 дней:
450*30/365=36,986 рублей
остаток спустя 30 дней:
5000+3000=8000 рублей
пересчёт за год:
8000*9/100=720 рублей
за оставшиеся 60 дней:
720*60/365=118,356 рублей
Итого сумма процентов:
36,986+118,356=155 рублей 34 копейка
Общая сумма, которую получит вкладчик:
5000+3000+155,34=8155 рублей 34 копеек

Калькулятор вкладов с пополнением

внести
дата приход расход сумма на счёте
5000 0 5000
0

Как рассчитать процент по вкладу с капитализацией. Что это: «капитализация вклада»

Проценты могут выплачиваться:

  1. общей суммой при [окончании
    | расторжении | в день подписания]
    договора по вкладу.
  2. общая сумма дробиться на части и выплачивается ежемесячно, ежегодно. Клиент может выбрать наиболее подходящий для себя вариант:
    • с указанной в договоре периодичностью или реже приходить в банк и снимать сумму начисленных процентов или автоматически переводить их на пластиковую карточку. То есть “жить на проценты”.
    • капитализация процентов, он же сложный процент
      причислять начисленные проценты к остатку по вкладу
      . Точно также как если бы вы приходили в день начисления процентов, снимали сумму процентов и пополняли ей вклад. Остаток по вкладу увеличивается и получается, что начисляется процент на процент. Вклады с капитализацией процентов следует выбирать тем, кто не планирует снимать сумму процентов частями. Этот совет не распространяется на вклады, где по условиям договора возможно частичное снятие в размере капитализированных процентов.

Формула расчёта вклада с капитализацией

S = s × ⎛

1 + P×d
100×D



n
S — итоговая сумма, которую получит вкладчик,
s — первоначальная сумма,
P — годовая процентная ставка,
d — количество календарных дней в периоде,
D — количество дней в календарном году,
n — количество капитализаций

Пример расчёта процентов по вкладу с капитализацией

1 января человек открыл вклад с капитализацией на 5000 рублей под 9% годовых на 6 месяцев
180 дней
. Начисление и капитализация процентов происходит в последний день каждого месяца.

5000 × (1 + 9/100 × 30/365)^3 × (1 + 9/100 × 28/365) × (1 + 9/100 × 31/365)^2 = 5000 × 1,02235634396 × 1,00690410959 × 1,01534609946 = 5226,06
Обратимся к таблице выше:

  • 30 дней будет в трёх месяцах: январь, апрель, июнь.
  • 28 дней может быть только в одном месяце — феврале.
  • 31 день будет в марте и мае.

При расчёте количества дней в периоде нужно также учитывать, что если последний день срока приходится на нерабочий день, днем окончания срока считается ближайший следующий за ним рабочий день (Статья 193 Гражданского кодекса РФ). Поэтому калькуляторы, выложенные в интернете, будут близки к реальности, но 100% точности они не дают. Как можно рассчитать доход за 2 года, когда производственный календарь утверждается ежегодно?

Как проверить правильность начисления процентов по вкладу с точностью до копейки

Техника даёт сбои. Когда есть выписка из счёта, вручную пересчитать полагающиеся к выплате проценты не так сложно.

Пример: 20 января человек открыл вклад с капитализацией раз в квартал на 5000 рублей под 9% годовых на 9 месяцев
273 дня
. 10 марта пополнил счёт на 30000 рублей. 15 июля снял 10000 рублей. 20 апреля 2014 года и 20 июля 2014 года приходится на воскресенье.

20.01-10.03:
5000*9/100*49/365=60,41
10.03-21.04:
35000*9/100*42/365=362,47
20.01-21.04:
60,41+362,47=422,88
21.04-15.07:
35422,88*9/100*85/365=742,42
15.07-21.07:
25422,88*9/100*6/365=37,61
21.04-21.07:
742,42+37,61=780,03
21.07-20.10:
26202,91*9/100*91/365=587,95

Облагаются ли проценты по вкладам налогом? Какие вклады облагаются налогом?

Предполагаю, что может прозвучать вопрос о налогах, почему не сделан соответствующий калькулятор.

Обратимся к закону (статья 214.2 Налогового кодекса РФ): если на момент заключения или пролонгация
продления
договора до 3-х лет процент по рублёвому вкладу превышает на февраль 2014 года: 8,25% + 5% = 13,25%
ставку рефинансирования на 5 процентных пунктов
, то ставка вклада минус 13,25%
на процентные доходы выше этого значения
гражданину РФ нужно заплатить 35% налога. Оформлением соответствующих документов должен заниматься банк.

На практике же никто не ставит процент, выше 13,25%:

Понятие % (доли) чего-либо

История возникновения процентов, расчёт процента, правила набора, разговорное употребление, задачи на проценты

Процент – это, определение

Понятие процента

История возникновения процентов

Использование процентов в повседневной жизни

Типы задач на проценты

Расчеты процентов

Проценты в программировании

Процент – это, определение

процент
— это одна сотая доля. Обозначается знаком «%». Используется для обозначения доли чего-либо по отношению к целому. Например, 17 % от 500 кг означает 17 частей по 5 кг каждая, то есть 85 кг. Это математическое понятие часто встречаются в повседневной жизни. Этимология термина имеет латинские корни. Слово «процент» происходит от латинского слова pro centum, что буквально переводится «за сотню», или «со ста».

Как экономическое понятие в значении ” “,”выгода
“, “преимущество” слово стало использоваться во второй половине 19 века.

Финансовое определение процента – плата, которую одно лицо () передает другому лицу (заемщику
) за то, что последний предоставляет первому во временное пользование денежные средства.

В современной финансовой лексике процент определяется как плата за использование заемных средств, как рентных доходов. Когда финансисты говорят о проценте, то они имеют в виду к погашению, то есть такую ставку в коэффициенте дисконтирования которая выравнивает дисконтированную (приведенную) цену
будущих результатов с ее настоящей ценой.

Бизнес лексика – работать за проценты означает работать за вознаграждение, исчисляемое в зависимости от прибыли
или оборота. В этом плане процент выступает как комиссионные, которые характеризуют, прежде всего, работу брокера

Понятие процента

В тексте знак процента используется только при числах в цифровой форме, от которых при наборе отделяется неразрывным пробелом ( 67 %), кроме случаев, когда знак процента используется для сокращённой записи сложных слов, образованных при помощи числительного и прилагательного “процентный”

процент по-китайски обозначается разными словами в зависимости от того используется ли он в математическом или в экономическом смысле.В чистом виде “процент” это 百分比 (байфэньби), что дословно переводится как “отношение к ста частям”. Так, например 10% будут звучать как “десять сотых”. То есть, в китайском проценте обязательно есть упоминание о “ста” и нет никаких посторонних заимствованных или древних слов, а только чистая математика.

В экономическом смысле процента – это ” , выгода”. Соответственно используется слово 利率 (лилю). Первый иероглиф – “прибыль”, второй – “коэффициент”, то есть “коэффициент прибыли”. Само слово может переводится как ” , процент, процентное отношение (к капиталу), норма прибыли”.

Процентное выражение в Китае часто используется в выражениях типа “за минувший год страна стала вырабатывать на 9% больше электричества”. Причем, может использоваться как знак процента “%”, так и дословное написание выражения “девять сотых”.

0,07 % = 0,0007;

Правило написания числа и знака процента раздельно введено в действие в 1982 году нормативным документом ГОСТ 8.417—81 (впоследствии заменённым на ГОСТ 8.417—2002); ранее нормой было не отделять знак процента пробелом от предшествующей цифры.

В настоящее время правило отбивки знака процента не является общепризнанным. До сих пор многие российские издательства не следуют рекомендациям ГОСТ 8.417—2002 и по-прежнему придерживаются традиционных правил набора, то есть при наборе знак процента от предшествующего числа не отделяется.

Иногда бывает удобным сравнивать две величины не по разности их значений, а в процентах. Например, цену
двух товаров сравнивать не в рублях, а оценивать, насколько одного продукта больше или меньше цены другого в процентах. Если сравнение по разности вполне однозначно, то есть всегда можно найти, насколько одна величина больше или меньше другой, то для сравнения в процентах нужно указывать, относительно какой величины вычисляется процент. Такое указание, впрочем, необязательно в том случае, когда говорят, что одна величина больше другой на число процентов, превышающее 100. В этом случае остается только одна возможность вычисления процента, а именно деление разности меньшее из двух чисел с последующим умножением результата на 100.

Проценты в экономике

процент является частью прибыли, которую кредитор
выплачивает заемщику за взятый в ссуду денежный капитал, и определяется как “иррациональная форма цены” ссудного капитала
. Источником процента выступает прибавочная стоимость, создаваемая в процессе производительного использования ссудного капитала
. Разделение прибыли, получаемой при использовании ссудного капитала, на процент, присваиваемый ссудным капиталом, и собственно прибыль — предпринимательский доход, получаемый кредитором, происходит под влиянием спроса и предложения на рынке ссудных капиталов. Таким образом, процент выражает отношения между заемщиком и кредитором и выступает в форме определенной процентной ставки
.

Ссудный процент – это, определение

Ссудный процент – это плата за временное пользование ссужаемой стоимостью. Это экономическая категория, функционирующая на основе кредитных отношений. Он выражает отношения заемщика и заемщика, имеющих свои специфические интересы при получении и уплате процента.

В отличие от займа ссудный процент предполагает не возвратное, а безвозвратное распределение стоимости произведенного товара
, причем не всей стоимости, а лишь стоимости прибавочного товара
в его превращенной форме — прибыли. Процент является прямым вычетом из прибыли, остающейся в распоряжении заемщика. Величина процента зависит от уровня ставки процента и суммы ссуды
, полученного кредитором.

Формирование ссудной политики коммерческого банка должно основываться на учете следующих важнейших факторов”:

Наличие капитала;

Степень рискованности и прибыльность различных видов займов
;

Стабильность депозитов;

Общее состояние экономики государства
;

Влияние на экономику денежно-кредитной и финансовой политики
;

Способности и опыт банковского персонала;

Потребности в займах района (региона), обслуживаемого банком
.

Данные факторы оказывают, бесспорно, влияние на проводимую банком
ссудную процентную политику.

Современное государство
с рыночной экономикой, контролируя движение ссудного процента, может влиять практически на все параметры общественного производства. В частности, поднимая ставку ссудного процента, через ЦБ может способствовать денежным накоплениям, снижению цен и стабилизации заработной платы, повышению эффективности производства и росту курса национальной валюты, снижению конкурентоспособности своих товаров, удорожанию экспортирования и удешевлению импорта товаров, увеличению импорта
капитала и сдерживанию его экспортирования
и т. д.

Депозитный процент – это, определение

Депозитный процент – это плата банков (кредитных учреждений) за хранение денежных средств, ценных бумаг и других материальных ценностей на счетах, в депозитариях, хранилищах. Он выражает отношения двух участников кредитной сделки, и его содержание имеет две стороны. В качестве заемщиков при депозитной операции выступают клиенты банка (кредитного учреждения) — предприятия, организации, учреждения, другие банки, население, а в качестве кредитополучателя (заемщика) — (кредитное учреждение).

Повышение уровня процентных ставок
по депозитам (вкладам) имеет не только экономическое значение, но и социальное. В условиях инфляции трудно обеспечить защиту интересов вкладчиков, а следовательно, они не заинтересованы в помещении средств на длительное хранение. Поэтому депозитная процентная политика банков должна увязываться с комплексным обслуживанием клиента.

Процентные ставки по депозитам в некоторых странах зависят от суммы вкладов: с их возрастанием увеличивается доход по вкладу. В целях стимулирования сбережений, особенно на продолжительный срок, кредитные учреждения зарубежных стран платят вкладчикам достаточно высокие проценты (с учетом
низкой инфляции
), в частности, в США — от 5,7 до 9,8%, в Британии — от 3,0 до 11,2%, в ФРГ — от 2,5 до 5,2%, во Франции — от 4,5 до 7,5%, в Италии — от 5,0 до 12,3%.

Методы начисления процентов

В банковской практике существуют различные методы и способы начисления процентов.

Применяются простые и сложные проценты.

Простые проценты – это, определение

Простые проценты – это
метод начисления, при котором сумма процентов определяется в течение всего периода, исходя из первоначальной величины долга, независимо от количества периодов
начисления и их длительности.

Простой процент – это когда процент по вкладу начисляется в конце срока
. Например, открыт вклад
на год, с выплатой процентов в конце срока вклада.

Формула, по которой производится расчет простых процентов:

Сложные проценты – это, определение

Сложные проценты – это
метод расчета процентов, при котором начисления происходят на первоначальную сумму вклада (долга) и на прирост вклада (долга), т.е. сумму процентов, начисленных после первого периода начисления. Таким образом, база для начисления сложных процентов (в отличие от простых) будет увеличиваться с каждым периодом начисления.

Формула сложных процентов выглядит так:

процентная ставка – это, определение

процентная ставка определяется в соответствии с конкретными условиями использования ссудного капитала и является объектом денежного и кредитного регулирования со стороны центробанка
. При этом величина процентных ставок способствует либо притоку денежного капитала на с денежных рынков других стран, либо его оттоку.

Коммерческие банки устанавливают ставки процентов, ориентируясь на учетные ставки, принятые в Центральных банках своих стран. При этом крупные банки определяют минимальные или лучшие ставки по ссудам, предоставляемым первоклассным заемщикам.

Важное значение в структуре процентных ставок имеют проценты по вкладам банковских клиентов. Проценты, выплачиваемые банками их клиентам, всегда существенно ниже процентов по займам (за счет этой разницы формируется один из главных источников банковской прибыли — процентная маржа
)

Процентная маржа
– это, определение

Применяется для замены символов, не входящих в ASCII, в строках URI в виде кодов типа %D0%9F%D1%80%D0%BE (первым стоит знак процента, потом двузначное шестнадцатеричное число).

В SQL знак процента при команде LIKE заменяет любое количество любых символов, то есть обеспечивает поиск по маске.

В Matlab-программах, LaTeX-разметке и PostScript знак процента употребляется перед началом строчного текстового комментария.

В калькуляторах имеется кнопка с изображением процента. В зависимости от организации
изготовителя простейшие калькуляторы вычисляют:

Процент от числа;